
Enterpr ise Integr i ty: Composite
Appl icat ion Platforms—Par t I

By Davi d McG ove ran

w w w . b i j o n l i n e . c o m 	 J u l y / A u g u s t 2 0 0 5

Building a Collaborative Enterprise

Managing Web Application
Performance

Supply Chain Event
Management Revisited

EAI Roads to Riches

O p t i m i z i n g B u s i n e s s I n t e g r a t i o n & E f f e c t i v e n e s s T h r o u g h L e a d i n g - E d g e T e c h n o l o g i e s

A      P U B L I C A T I O N

ALSO IN THIS ISSUE:

Numerous articles on
composite applications

and their benefits have
appeared in the pages
of Business Integration
Journal. A Composite
Application Platform (CAP)
combines the facilities of
an integration server and
an application server to
enable composition and
orchestration of services
into new applications. It

uses a model-driven architecture to develop and orchestrate
services. It permits new applications to be built with as little
programming as possible, while enabling maximum reuse
of IT assets. Composite applications have become one of the
primary reasons to deploy a Service-Oriented Architecture
(SOA). While an SOA is the preferred implementation
of a CAP, it’s certainly possible to use other component-
based architectures. Over the next few issues, we will treat
composite applications as being composed of services and,
therefore, implemented using an SOA, and describe the
components you should be looking for in an ideal CAP.
	 The primary benefit of a CAP is to enable reuse of IT
software and data assets to enable rapid design, redesign, and
deployment of new business functionality. The result is lower
cost of IT operations and improved IT responsiveness. This
strategy demands a uniform conceptual abstraction above
the technical detail of those assets so that services can be
composed and orchestrated without low-level programming.
The environment must provide context management and
coordination across the composite application’s services, any
number of which may comprise a unit of work. Composite
applications blur the distinction between application
development and application integration, and so combine
the facilities and methodologies of each.
	 A CAP provides a robust environment for the rapid
design and use of composite applications. It comprises
design tools, methodologies, services and processes, an
abstraction layer that presents components and services in
a uniform manner, and various libraries. It’s possible for a
CAP to form the IDE and integration layers of a BPMS, with
the CAP orchestration modeler and orchestration engine
being special, restricted cases of the BPMS process modeler
and process engine. However, don’t confuse the two. Despite
the frequent misuse of “business process” by those vendors
and standards bodies, the business and IT concepts of
process deserve careful differentiation. As an IT tool, a CAP
orchestrates IT processes that rarely have the behavioral
complexity of business processes.
	 Taken together, this definition of CAP implies that,
in order to be considered in the CAP category, a product
should have certain design time, run-time, management,

and support components. It will take several columns
to discuss the necessary components. This month, we’ll
begin our discussion of the design time components,
completing it next month. We’ll highlight the discussion of
each component with a bullet so they’ll be easy to locate
throughout the series of columns.
	 The primary component of a CAP design time
environment is the orchestration modeler:

•	Orchestration Modeler: The orchestration modeler is
used to capture, design, and modify service properties
and the orchestration of those services through a rich
graphical depiction of services and controlled flows among
them. The tool’s modeling constructs should reflect the
development paradigm so that the orchestration can be
implemented directly from the model. The tool should
promote and actively support at least one design method-
ology, but shouldn’t restrict the organization from using
its preferred methodology. It should permit users to define
and selectively enforce relevant design standards such as
BPMN and UML. Process abstraction via nested processes
should be possible so an orchestration can be created and
maintained in successively more detail, without forcing
the user to grasp all of it at once. Process independence
should allow the designer to separate deployment-specific
considerations from application requirements. The design
platform should be integrated with the run-time environ-
ment so the application, or portions of it, can be safely
tested and deployed. The model should be used to drive
run-time orchestration without requiring an intermediate
compilation or application redeployment. Similarly, if gen-
eration of the composite application from the model is a
development or deployment option, its deployment should
not affect the uptime of other applications. Otherwise, the
agile, incremental change and high availability that a CAP
promises is compromised.

	 Next month, we’ll discuss the remaining design time
components, including transformation and transparent data
access modeling, transaction modeler, portal designer, and
integrated development environment. CAP design time
components should be seamlessly integrated so the user can
move between them without losing context and without
having to use a different user interface style.
	 Until next column, may your enterprises be orchestrated
and your integrity unyielding. bij

E n t e r p r i s e
I N T E G RIT Y
C o m p o s i t e
A p p l i c a t i o n
P l a t f o r m s :
P a r t I

B y D a v i d M c G o v e r an

David McGoveran is president of Alternative Technologies. He has more than 25
years of experience with mission-critical applications and has authored numerous
technical articles on application integration.
e-Mail: mcgoveran@bijonline.com; Website: www.alternativetech.com

About the Author

�   •   B u s i n e s s I n t e g r a t i o n J o u r n a l   •   J u l y / A u g u s t 2 0 0 5

